Inducing Translation Templates for Example-Based Machine Translation

نویسنده

  • Michael Carl
چکیده

This paper describes an example-based machine translation (EBMT) system which relays on various knowledge resources. Morphologic analyses abstract the surface forms of the languages to be translated. A shallow syntactic rule formalism is used to percolate features in derivation trees. Translation examples serve the decomposition of the text to be translated and determine the transfer of lexical values into the target language. Translation templates determine the word order of the target language and the type of phrases (e.g. noun phrase, prepositional phase, ...) to be generated in the target language. An induction mechanism generalizes translation templates from translation examples. The paper outlines the basic idea underlying the EBMT system and investigates the possibilities and limits of the translation template induc-

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Translation Templates From Bilingual Text

This paper proposes a two-phase example-based machine translation methodology which develops translation templates from examples and then translates using template matching. This method improves translation quality and facilitates customization of machine translation systems. This paper focuses on the automatic learning of translation templates. A translation template is a bilingual pair of sen...

متن کامل

The Best Templates Match Technique For Example Based Machine Translation

It has been proved that large-scale realistic Knowledge Based Machine Translation (KBMT) applications require acquisition of huge knowledge about language and about the world. This knowledge is encoded in computational grammars, lexicons and domain models. Another approach – which avoids the need for collecting and analyzing massive knowledge-is the Example Based approach, which is the topic of...

متن کامل

Automatically Extracting Templates from Examples for NLP Tasks

In this paper, we present the approaches used by our NLP systems to automatically extract templates for example-based machine translation and pun generation. Our translation system is able to extract an average of 73.25% correct translation templates, resulting in a translation quality that has a low word error rate of 18% when the test document contains sentence patterns matching the training ...

متن کامل

Example-Based Machine Translation for Low-Resource Language Using Chunk-String Templates

Example-Based Machine Translation (EBMT) for low resource language, like Bengali, has low-coverage issues, due to the lack of parallel corpus. In this paper, we propose an EBMT for low resource language, using chunk-string templates (CSTs) and translating unknown words. CSTs consist of a chunk in source-language, a string in target-language, and word alignment information. CSTs are prepared aut...

متن کامل

Sub-Phrasal Matching and Structural Templates in Example-Based MT

In this work I look at two different paradigms of Example-Based Machine Translation (EBMT). I combine the strengths of these two systems and build a new EBMT engine that combines sub-phrasal matching with structural templates. This synthesis results in higher translation quality and more graceful degradation, yielding 1.5% to 7.5% relative improvement in BLEU scores.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999